第261章 逃出生天的契机

小说屋推荐各位书友阅读:天才学霸?我只是天生爱学习 第261章 逃出生天的契机
最新网址:www.xiaoshuoge.info
(小说屋 www.xiaoshuoge.info)    “老师,我们必须做些什么。”

    燕北大学,智华楼办公室中,袁新毅焦急的大声说道。

    他已经在这里呆了好几天时间,回到华夏的第一时间他就来找到了老师,王启明也在得到消息的第一时间就发动自己的人脉为此奔波。

    可惜,他们都没有取得什么成效。

    似乎没有人愿意帮他们。

    “新毅,这个时候不能着急。”

    田刚不厌其烦的解释,“我们现在越是表现得急切,对陈辉就越是不利。”

    “越是危急关头,我们越是要冷静才行,我们可以尽可能的扩大这件事在学术圈的影响,但官方不能直接插手。”

    “我冷静不了!”

    袁新毅负气说道,若只是学术圈,以他如今的地位,根本用不着来求老师,陈辉本身更是学术圈顶流,这件事在学术圈的影响已经根本不用他们来扩大。

    他知道老师说的是对的,但他实在无法忍受眼看着学生被困在阿美莉卡,自己却什么也做不了的感觉。

    说完,他径直走出办公室,往对面清华走去。

    田刚看着负气离开的袁新毅,轻叹一声,他早就把陈辉当成了自己孙辈,他心中的急切一点不比袁新毅少,但他知道,这个时候需要忍耐。

    他是从黑暗时代走过来的,这点些许忍耐,算不得什么。

    清华大学,邱成梧数学中心,

    “邱老,陈辉也算是你徒孙,你一定得为他做些什么。”

    刚从燕北大学过来的袁新毅已经出现在邱成梧办公室。

    邱成梧苦笑,“放心吧,现在陈辉很安全,至少暂时是这样的。”

    毕竟是从哈佛回来的学者,邱成梧在阿美莉卡也有不少关系,知道陈辉如今的处境。

    “反正他是搞理论的,在哪搞都是一样的。”

    “去普林斯顿对于他来说未必是坏事。”

    邱成梧苦口婆心的劝说到。

    袁新毅摇头,听到邱成梧这话后,也不再恳求,但眼神坚定,“陈辉可以去普林斯顿,但那是他自己想去,而不是在这样的情况下去!”

    说完他转身就离开了邱成梧办公室,一直离开了清华。

    袁新毅没有再去求人帮陈辉脱困。

    他忽然想通了一件事情,搞理论数学,救不了华夏!

    一念及此,袁新毅没有在京城多呆,径直回了江城大学,开始搜集华夏在工业方面遇到的难题,去联系这方面的团队和企业,尝试用自己的数学知识去解决这些问题。

    他要从理论数学转向应用!

    ……

    京城,四合院,葡萄架下石桌上,

    这一次两位老人没有下棋,而是摆了两杯茶在石桌上,各自在沉思,偶尔闲聊两句。

    “袁新毅那小家伙转去搞应用数学了。”

    “我们现在不缺顶级工程师,反倒是基础理论方面,好不容易有突破,对未来是好事。”

    “他为什么转应用你看不出来吗?先把眼前的事情做到极致,再考虑未来的事情吧!

    菲奖得主,说不定还真能搞出些东西来。”

    “那也未必,应用数学跟理论数学是两个完全不同的东西,擅长理论数学还真不一定搞得好应用数学。”

    “哦?你是说陈辉吗?”

    小院中沉默了许久。

    “随他去吧。”

    老人也不再争辩,双眼微眯,看向万里无云的天空,一丝若有若无的杀气在小院中缭绕,“抓紧推进七代机的建造,才是当务之急!”

    “陈辉目前还是安全的,但我们得尽快,阿美莉卡的总统四年一换,众所周知,换一个总统政策就掉一次头,谁也不知道下一位上来的总统对陈辉是什么态度。

    已经只剩两年了。”

    “放心吧,我已经派人去保护陈教授了,等到东风起了,就干一票大的,让这个世界看看,飞在天上的龙是什么样的!”

    两位老人意气风发,都是抬头望天,仿佛已经看到一条神龙在天空游走逞威。

    陈辉被释放,在普林斯顿任教的消息早已人尽皆知。

    这件事看似告一段落,但大家的记忆也并没有那般短暂,依旧有不少网友在网上为陈辉鸣不平,大声斥责阿美莉卡的卑鄙无耻。

    甚至不少网友还发起了抵制阿美莉卡商品的活动,一时间声势浩大,看得阿美莉卡商人们忧心不已。

    “放心吧,他们坚持不了多久的,我们什么都不用做,只要冷处理就好。”

    “我们华夏人就是这样,喜欢运动式的活动,等到风头过了,热情消退,就该怎样就还是怎样了。”

    一位华夏区高管信誓旦旦的说道,“这样的事情在我们华夏发生过不知道多少次了,比如之前抵制东瀛商品,现在谁还记得?”

    事实胜于雄辩,两位阿美莉卡高管大喜,对眼前这位女人越发信服起来,“果然,朱女士不愧是土生土长的华夏人,这种事情还得交给朱女士才行,华夏区的事情以后就多拜托朱女士了!”

    “放心吧,由我接手后,增长、利润只会以惊人的速度增涨,我可以保证!”

    朱小静自信满满的昂着头,嘴角微翘,得意的说道。

    他创造的利润奇迹有迹可查,否则山姆也不会让她担任华夏区总裁。

    “朱女士办事,我们放心!”

    两位阿美莉卡高管笑着离开朱小静办公室。

    很快,朱小静就召集山姆华夏区高管,召开一场短会。

    “这些商品都是什么?”

    “利润这么低,放在货架上就是占地方,这些全部下架,换成好利来……”

    ……

    七月的普林斯顿最高气温也不过才30度,比起火炉江城相差甚远。

    卡内基湖旁,陈辉穿着一件运动背心,吭哧吭哧的沿着湖边慢跑。

    这几年一直忙着刷熟练度,攻克各种难题,原本熟练度最高的体育等级却是完全落下了,若不是数据面板有保级的隐藏功能,他的身体素质恐怕早就一落千丈。

    现在正好有时间慢慢将熟练度刷上去。

    说起来,刷体育熟练度是非常划算的投资,良好的身体素质可以提升数学家的学术寿命,越是天才的数学家,时间就越是宝贵。

    如今陈辉已经不再需要追求眼前利益,可以谋划未来了。

    风物长宜放眼量!

    陈辉脑海中浮现出了教员这首诗。

    除了恢复体育锻炼,陈辉也开始关注起语文的熟练度来,尤其是在他如今的记忆力加持下,语文的熟练度正在以惊人的速度增长。

    如今他数学早已达到5级,英语因为不断英文文献,都已经快到4级了,解决两道与物理相关的千禧年难题,让他的物理同样快接近5级,研究材料让他化学水涨船高,已经是3级。

    也就是说,只要他将生物的等级刷上去,就能再次获得一个自由属性点,这无疑是非常划算的。

    呼哧……呼哧……

    脑中想着事情,陈辉已经开始大口大口的喘着粗气。

    看了看手表,今日5KM计划已完成。

    陈辉也没有逞强,放慢速度,开始慢走。

    虽然久不锻炼,但身体底子还在,跑个五公里还是没问题的,但要是再远,就有些超负荷了。

    刚放慢速度,旁边一道靓影就风一般的从身旁冲了过去,超过陈辉时,还回头看了陈辉一眼,嘴角微撇,显然对陈辉的体力很是鄙夷。

    “陈教授在数学上无人能比,但这跑步,可就差得有点远了。”

    又是一人从他身旁跑过,还笑嘻嘻的调侃了一句,竟然是费弗曼教授。

    自己现在竟然连个六十多岁的老头都跑不过了,陈辉也有些无奈。

    不过他也没有逞强,慢走一段后,在卡内基湖旁的长椅上坐着休息了一会儿,这座由安德鲁·卡内基捐资修建的人工湖,此刻正被薄雾织成半透明的纱幔,湖面像一块被晨光慢慢焐热的祖母绿翡翠。

    陈辉只是单纯的坐着,放空大脑,欣赏眼前湖景。

    【你的语文熟练度由2级72%提升到73%】

    一条弹幕从眼前闪过。

    陈辉倒是没想到自己只是看看景色都能提升语文熟练度的。

    心满意足的起身。

    回到学校给自己准备的公寓,洗了个澡,拿出一迭黎曼猜想相关的论文,钻研起来。

    接连解决两道千禧年难题,都获得了自由属性点,陈辉猜测,解决黎曼猜想,大概率还能获得一个自由属性点。

    既然一时半会无法进行可控核聚变的研究,陈辉索性转变思路,先提升自身属性,等到回去后,很多问题想必就能迎刃而解了。

    黎曼猜想的内容很简单,黎曼ζ函数的所有非平凡零点均位于复平面上的临界线(Re(s)=1/2)上。

    这也是黎曼猜想民科含量超标的原因,似乎任何一个上过小学的人都能对它指指点点。

    但想要理解这句话真正的含义却并没有那么简单。

    黎曼的这个猜想主要是用来描述自然数中素数的分布。

    目前计算机已经验证了前15亿个非平凡零点均位于临界线上,但严格数学证明仍未完成,如果这个猜想能得到严格的数学在证明,可精确描述素数在自然数中的分布规律。

    那么数论中数以百计的悬而未决问题,比如孪生素数猜想、哥德巴赫猜想等,将会迎刃而解,使这些依赖黎曼猜想的命题升级为定理,极大完善数论体系。

    同时证明过程可能需要革命性的方法,如非交换几何、随机矩阵理论等,其价值可能远超猜想本身,类似费马大定理的证明催生了椭圆曲线理论,黎曼猜想的解决或将为代数几何、复分析等领域开辟新方向。

    对黎曼ζ函数性质的深入理解将推动复变函数论、调和分析的发展,并为物理和工程领域的数学模型提供更精确的工具,这也是陈辉选择了黎曼猜想作为下一个课题的原因之一。

    同时,RSA等公钥加密算法依赖大素数分解的困难性,若黎曼猜想揭示素数分布规律,将会加速破解此类算法的效率,到时候,互联网上将不会存在真正意义上的安全。

    或许,这会是他逃出生天的契机。

    摇了摇头,甩出脑海中的杂念,继续专注于眼前的论文。

    历史上很多著名数学家都研究过素数的规律,但想到用函数来表达素数分布,却还要从高斯说起。

    高斯在1792年通过素数分布统计提出素数定理猜想,预言素数计数函数渐近行为(π(x) x/ln x),为问题奠定基础。

    狄利克在1837年首创L函数并证明算术级数中的素数无限性,开创解析数论方法。

    切比雪夫在1852年以函数θ(x)=Σ_{p≤x} ln p为工具,首次严格量化PNT边界,逼近证明门槛。

    1859年,黎曼发表划时代论文《论小于给定数值的素数个数》,彻底重构问题框,他定义复变ζ函数(ζ(s)=Σn, Re(s)>1),通过解析延拓覆盖全复平面,并揭示素数分布的核心秘密蕴藏于ζ函数的非平凡零点——即实部在[0,1]内的零点。

    据此,黎曼提出了一个革命性猜想,即所有非平凡零点的实部均为1/2,并给出显式公式π(x)= Li(x)-Σ_ρ Li(x^ρ)+低阶项,证明若RH成立,则素数分布误差将被压缩至最优阶O(x^{1/2+ε})。

    20世纪初,研究进入理论攻坚期。

    阿达马与瓦莱·普桑基于ζ函数在Re(s)=1无零点(弱于RH),独立证明PNT,首次严格验证高斯猜想。

    哈代突破性地证明无限多个零点位于临界线,其构造的实值函数Z(t)= e^{iθ(t)}ζ(1/2+it)成为后续计算验证的基石,哈代与李特尔伍德进一步提出ζ函数矩猜想,为零点密度研究建立分析框架。

    塞尔伯格则通过迹公式与筛法创新,证明临界线上零点存在正比例,彻底消除“临界线可能仅含零星零点”的疑虑,并因此获得了1950年的菲尔兹奖。

    黎曼猜想的诞生与发展,是数论从经验观察迈向现代解析理论的缩影。

    陈辉翻到论文最后一页,眼中似乎还有公式在流转。

    这些天他已经看完了相关研究的所有论文,接下来,就到了他出招的时候了。

    前人对于黎曼猜想的研究无疑已经进展到很深入的阶段了,但毫无疑问,无论是筛法还是圆法,都距离那个终极答案还有一定距离。

    筛法是华夏数学家很擅长的一种方法,陈景润就是通过改进筛法证明了哥德巴赫猜想的弱化定理1+2,可惜距离1+1还有很长的距离。

    张一堂同样是通过优化筛和L函数分析,证明了存在无穷多对间隙小于7000万的相邻素数对,可惜,距离彻底证明孪生素数猜想同样还有很长的距离。

    似乎总是差那么一点。

    是沿着哈代建立的框架,继续深入研究,还是通过优化筛法来证明黎曼猜想?

    陈辉依旧没什么头绪,他还需要更多的灵感。

    罗马不是一天建成的,既然暂时没有头绪,陈辉也没有着急,转而放松大脑,打开了费弗曼发来的邮件,里面是通过普林斯顿数学院初筛后的学生简历。小说屋 www.xiaoshuoge.info
最新网址:www.xiaoshuoge.info
如果您中途有事离开,请按CTRL+D键保存当前页面至收藏夹,以便以后接着观看!

如果您喜欢,请点击这里把《天才学霸?我只是天生爱学习》加入书架,方便以后阅读天才学霸?我只是天生爱学习最新章节更新连载
如果你对《天才学霸?我只是天生爱学习》有什么建议或者评论,请